Class PlotAnalysis
java.lang.Object
com.plotsquared.core.plot.expiration.PlotAnalysis
-
Field Summary
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic void
analyzePlot
(Plot plot, RunnableVal<PlotAnalysis> whenDone) asList()
static void
calcOptimalModifiers
(Runnable whenDone, double threshold) This will set the optimal modifiers for the plot analysis based on the current plot ratings
- Will be used to calibrate the threshold for plot clearingstatic PlotAnalysis
getAnalysis
(Plot plot, Settings.Auto_Clear settings) static double
getCC
(int n, int sum) Get correlation coefficient.int
getComplexity
(Settings.Auto_Clear settings) static int[]
getSD
(int[]... ranks) An optimized lossy standard deviation algorithm.static String
static void
static int[]
rank
(int[] input) An optimized algorithm for ranking a very specific set of inputs
- Input is an array of int with a max size of 102400
- A reduced sample space allows for sorting (and ranking in this case) in linear timestatic int[]
rank
(int[] input, int size) An optimized algorithm for ranking a very specific set of inputsstatic void
sort
(int[] input) static int[]
square
(int[] array) A simple array squaring algorithm.static int
sum
(int[] array) CallsArrays.stream(array).sum()
-
Field Details
-
running
-
changes
-
faces
-
data
-
air
-
variety
-
changes_sd
-
faces_sd
-
data_sd
-
air_sd
-
variety_sd
-
-
Constructor Details
-
PlotAnalysis
public PlotAnalysis()
-
-
Method Details
-
getAnalysis
-
analyzePlot
-
calcOptimalModifiers
This will set the optimal modifiers for the plot analysis based on the current plot ratings
- Will be used to calibrate the threshold for plot clearing- Parameters:
whenDone
- task to run when donethreshold
- threshold
-
logln
-
log
-
getCC
Get correlation coefficient.- Parameters:
n
- nsum
- sum- Returns:
- result
-
sum
CallsArrays.stream(array).sum()
- Parameters:
array
- array- Returns:
- sum
-
square
A simple array squaring algorithm. - Used for calculating the variance- Parameters:
array
- array- Returns:
- result
-
getSD
An optimized lossy standard deviation algorithm.- Parameters:
ranks
- ranks- Returns:
- result
-
rank
An optimized algorithm for ranking a very specific set of inputs
- Input is an array of int with a max size of 102400
- A reduced sample space allows for sorting (and ranking in this case) in linear time- Parameters:
input
- input- Returns:
- result
-
rank
An optimized algorithm for ranking a very specific set of inputs- Parameters:
input
- inputsize
- size- Returns:
- result
-
sort
-
asList
-
getComplexity
-